

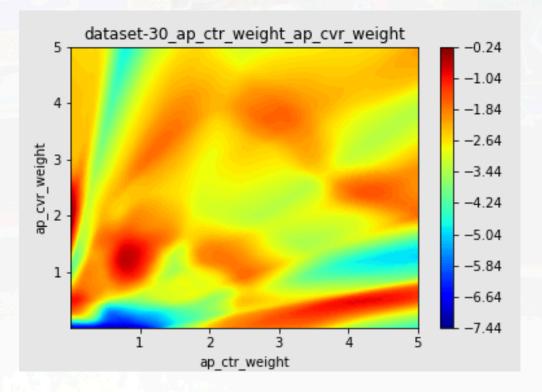
Solution for Automated Hyperparameter Optimization Challenge

DAIR Lab, Peking University 2021.10.30

Preliminary

• Problem Analysis

- Black-box optimization
- All hyperparameters are numerical
- The ground truth is continuous and stable



Bayesian Optimization (BO)

- Configuration A choice of hyperparameters from their value ranges
- Observations The collection of configurations and their performance
- Pipeline
 - Fit a probabilistic surrogate model based on observations
 - Choose the next configuration to evaluate based on the surrogate
 - Evaluate the configuration
 - Augment the observations

1 $[\mathbf{R}, \theta_{inc}] \leftarrow Initialize(\Theta, \Pi);$ 2 repeat 3 $| [\mathcal{M}, t_{fit}] \leftarrow FitModel(\mathbf{R});$ 4 $| [\vec{\Theta}_{new}, t_{select}] \leftarrow SelectConfigurations(\mathcal{M}, \theta_{inc}, \Theta);$ 5 $| [\mathbf{R}, \theta_{inc}] \leftarrow Intensify(\vec{\Theta}_{new}, \theta_{inc}, \mathcal{M}, \mathbf{R}, t_{fit} + t_{select}, \Pi, \hat{c});$ 6 until total time budget for configuration exhausted; 7 return $\theta_{inc};$

Image: F., Hutter et al. Sequential Model-Based Optimization for General Algorithm Configuration, 2011

BO Components

PKU-DAIR

- Surrogate Gaussian Process (GP)
- The posterior given x_{*} is a normal distribution,

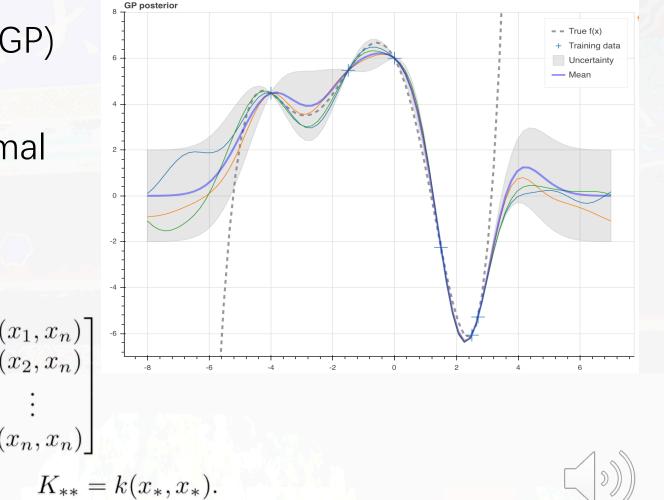
$$\overline{y}_{*} = K_{*}K^{-1}\mathbf{y},$$

$$\operatorname{var}(y_{*}) = K_{**} - K_{*}K^{-1}K_{*}^{\mathrm{T}}.$$

$$K = \begin{bmatrix} k(x_{1}, x_{1}) & k(x_{1}, x_{2}) & \cdots & k(x_{1}, x_{n}) \\ k(x_{2}, x_{1}) & k(x_{2}, x_{2}) & \cdots & k(x_{2}, x_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ k(x_{n}, x_{1}) & k(x_{n}, x_{2}) & \cdots & k(x_{n}, x_{n}) \end{bmatrix}$$

$$K_{*} = \begin{bmatrix} k(x_{*}, x_{1}) & k(x_{*}, x_{2}) & \cdots & k(x_{*}, x_{n}) \end{bmatrix}$$

$$K_{*} = \begin{bmatrix} k(x_{*}, x_{1}) & k(x_{*}, x_{2}) & \cdots & k(x_{*}, x_{n}) \end{bmatrix}$$



BO Components

Acquisition Function – Expected Improvement (EI)

$$E(x) = E[max(f_{min} - f(x), 0)]$$

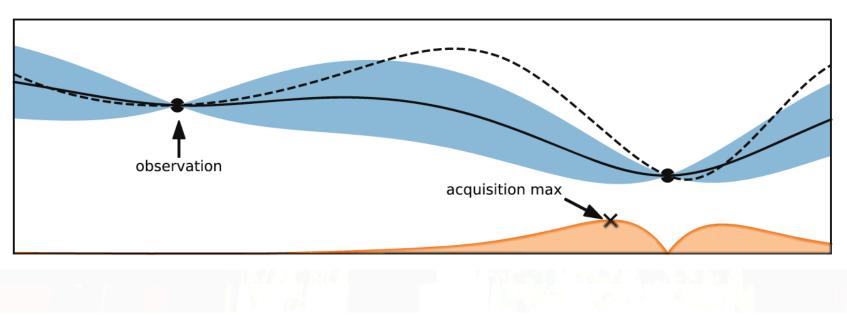


Image: https://zhuanlan.zhihu.com/p/143108146

BO Components

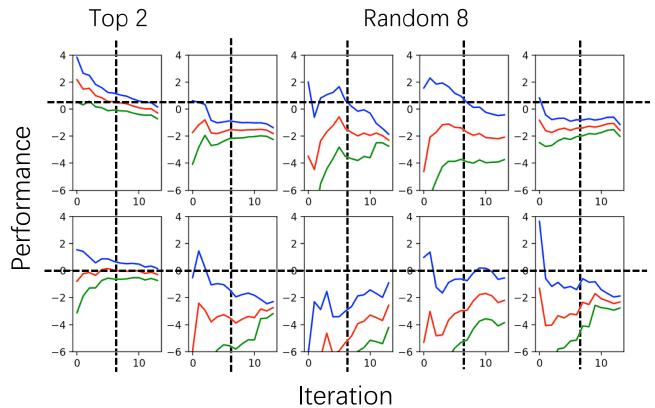
- Acquisition Optimizer L-BFGS-B with local and random start
 - L-BFGS-B A well-known quasi-Newton algorithm for optimization
 - Initial points Select 10 start points with the best El value via:
 - Monte Carlo sampling from the entire space
 - One-step mutation from the best observed configurations

Summary

- Algorithm: Bayesian Optimization
- Surrogate: Gaussian Process
- Acquisition Function: El
- Acquisition Optimizer: L-BFGS with local and random start

Final

- Less evaluation budget
- Multi-fidelity results with confidence bounds



Combine with BO

- At the 7-th iteration, early-stop a configuration if it is worse than half of the observed configurations
- Impute the early-stopped configuration with the median of observed performance

Conclusion

• The preliminary solution has already been integrated into OpenBox

from openbox import SyncBatchAdvisor, Observation

config_space = ...

def evaluate_configs(config):

••

advisor = SyncBatchAdvisor(

config_space, batch_size=5, batch_strategy='default', initial_trials=10, init_strategy='random_explore_first', rand_prob=0.1, surrogate_type='gp', acq_type='ei', acq_optimizer_type='random_scipy', task_id='thpo'

for i in range(20):

ask

PKU-DAIR

- config_list = advisor.get_suggestions()
- # evaluate
- reward_list = evaluate_configs(config_list)
 # tell
- for config, reward in zip(config_list, reward_list):
 objs = [-reward] # OpenBox minimizes the objective
 observation = Observation(config=config, objs=objs)
 advisor.update_observation(observation)

OPENBOX

